Contents
Images
Upload your image
DSS Images Other Images
Related articles
The frequency of planets in multiple systems Context: The frequency of planets in binaries is an important issue inthe field of extrasolar planet studies, because of its relevance inestimating of the global planet population of our Galaxy and the cluesit can give to our understanding of planet formation and evolution.However, only preliminary estimates are available in the literature. Aims: We analyze and compare the frequency of planets in multiplesystems to the frequency of planets orbiting single stars. We also tryto highlight possible connections between the frequency of planets andthe orbital parameters of the binaries (such as the periastron and massratio.) Methods: A literature search was performed for binariesand multiple systems among the stars of the sample with uniform planetdetectability defined by Fischer & Valenti (2005, ApJ, 622, 1102),and 202 of the 850 stars of the sample turned out to be binaries,allowing a statistical comparison of the frequency of planets inbinaries and single stars and a study of the run of the planet frequencyas a function of the binary separation. Results: We found that theglobal frequency of planets in the binaries of the sample is notstatistically different from that of planets in single stars. Evenconservatively taking the probable incompleteness of binary detection inour sample into account, we estimate that the frequency of planets inbinaries can be no more than a factor of three lower than that ofplanets in single stars. There is no significant dependence of planetfrequency on the binary separation, except for a lower value offrequency for close binaries. However, this is probably not as low asrequired to explain the presence of planets in close binaries only asthe result of modifications of the binary orbit after the planetformation. Table 8 and Appendix A are only available in electronic form athttp://www.aanda.org
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Radial Velocities for 889 Late-Type Stars We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.
| Kinematics and Metallicity of Stars in the Solar Region Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.
| Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST
| CA II H and K measurements made at Mount Wilson Observatory, 1966-1983 Summaries are presented of the photoelectric measurements of stellar CaII H and K line intensity made at Mount Wilson Observatory during theyears 1966-1983. These results are derived from 65,263 individualobservations of 1296 stars. For each star, for each observing season,the maximum, minimum, mean, and variation of the instrumental H and Kindex 'S' are given, as well as a measurement of the accuracy ofobservation. A total of 3110 seasonal summaries are reported. Factorswhich affect the ability to detect stellar activity variations andaccurately measure their amplitudes, such as the accuracy of the H and Kmeasurements and scattered light contamination, are discussed. Relationsare given which facilitate intercomparison of 'S' values with residualintensities derived from ordinary spectrophotometry, and for convertingmeasurements to absolute fluxes.
| Maximum separations among cataloged binaries The paper classifies many of the widest common-motion binaries listed inthe Aitken catalog and list 72 physical pairs with known photoelectricphotometry, 31 physical pairs without good photometry, and 27 opticalpairs. As a function of primary types, the physical systems have upperlimits to their separations that are exceeded by some of the opticalpairs. The fact that optical pairs occur with larger separations impliesthat the limits are real ones and not just catalog limitations. Thoselimits (in AU) are expressed by 2500 M1 exp 1.54 for B5-KO main-sequenceprimaries. The same limits hold for the Trapezium and hierarchicalsystems studied previously.
| Photoelectric observations of CPM stars in the BVRI system A photometric program to estimate the frequency of close unresolvedcompanions in visual binary systems has been developed. The sensitivityof the detection depends on the accuracy of the differential photometricmeasurements of binary components. Unresolved companions up to sevenmagnitudes fainter than the primary are detectable in the BVRIphotometric systems.
| Common proper motion stars in the AGK 3 A search was made of common-proper-motion (CPM) systems among AGK 3stars. The selection of physical systems was based upon the ratiobetween the angular separation (rho) and the proper motion (mu); the CPMstars found are presented in two tables. Table I lists systems withrho/mu less than 1000 years. It contains 326 entries, and the proportionof optical pairs is estimated to be 1 percent. Table II lists systemswith rho/mu in the range 1000 to 3500 years; it contains 113 systems,but only 60 percent of them are physical. Nevertheless, these systemsoften have separations larger than 10,000 AU and are the mostinteresting for the study of the tail of the distribution function ofthe semimajor axes.
| A sample of solar-type stars of known age A sample of field F and G dwarfs of known ages is presented. All thedwarfs are secondaries of visual binaries in which the temperature andgravity of the hotter primary has been estimated from Stromgrenphotometry, and its age derived from reference to isochrones. This ageis taken to apply to the secondary. Even in the case of F-typesecondaries, which themselves have measured Stromgren indices, it ismuch better to estimate ages from the primaries as it is demonstratedthat use of isochrones to determine age of stars not far evolved fromthe main sequence can lead to significant systematic overestimates ofages when the photometric measurements have typical random errors. Anumber of systems in which photometry is available for both componentshave primaries which appear much younger than the secondaries,suggesting a need for further investigation.
| UVBY photometry of wide visual double stars with B, A and F spectral type- I. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1978A&AS...34..453O&db_key=AST
| Standard stars for the five-color photometric system of the Dominion Astrophysical Observatory Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971AJ.....76..246H&db_key=AST
| A catalogue of four-color photometry of late F-type stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969AJ.....74..705P&db_key=AST
| Lichtelektrische UBV-Photometrie von Standardsternen und in vier Sternfeldern am Äquator Not Available
| UBV photometry of 550 F, G and K type stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1966MNRAS.133..475A&db_key=AST
| Radial velocity measurements of some visual double stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1959AJ.....64..219S&db_key=AST
| Photometric parallaxes and the mass-luminosity relation. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1956AJ.....61..361E&db_key=AST
| A photometric system Not Available
| Photoelectric Observations of Visual Double Stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1953ApJ...117..361J&db_key=AST
| Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1953ApJ...117..313J&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Aquila |
Right ascension: | 20h27m26.93s |
Declination: | -02°07'10.3" |
Apparent magnitude: | 7.463 |
Distance: | 46.533 parsecs |
Proper motion RA: | -61.5 |
Proper motion Dec: | -70.1 |
B-T magnitude: | 8.076 |
V-T magnitude: | 7.514 |
Catalogs and designations:
|