Contents
Images
Upload your image
DSS Images Other Images
Related articles
The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941
| Proper-motion binaries in the Hipparcos catalogue. Comparison with radial velocity data Context: .This paper is the last in a series devoted to the analysis ofthe binary content of the Hipparcos Catalogue. Aims: .Thecomparison of the proper motions constructed from positions spanning ashort (Hipparcos) or long time (Tycho-2) makes it possible to uncoverbinaries with periods of the order of or somewhat larger than the shorttime span (in this case, the 3 yr duration of the Hipparcos mission),since the unrecognised orbital motion will then add to the propermotion. Methods: .A list of candidate proper motion binaries isconstructed from a carefully designed χ2 test evaluatingthe statistical significance of the difference between the Tycho-2 andHipparcos proper motions for 103 134 stars in common between the twocatalogues (excluding components of visual systems). Since similar listsof proper-motion binaries have already been constructed, the presentpaper focuses on the evaluation of the detection efficiency ofproper-motion binaries, using different kinds of control data (mostlyradial velocities). The detection rate for entries from the NinthCatalogue of Spectroscopic Binary Orbits (S_B^9) is evaluated, as wellas for stars like barium stars, which are known to be all binaries, andfinally for spectroscopic binaries identified from radial velocity datain the Geneva-Copenhagen survey of F and G dwarfs in the solarneighbourhood. Results: .Proper motion binaries are efficientlydetected for systems with parallaxes in excess of ~20 mas, and periodsin the range 1000-30 000 d. The shortest periods in this range(1000-2000 d, i.e., once to twice the duration of the Hipparcos mission)may appear only as DMSA/G binaries (accelerated proper motion in theHipparcos Double and Multiple System Annex). Proper motion binariesdetected among S_B9 systems having periods shorter than about400 d hint at triple systems, the proper-motion binary involving acomponent with a longer orbital period. A list of 19 candidate triplesystems is provided. Binaries suspected of having low-mass(brown-dwarf-like) companions are listed as well. Among the 37 bariumstars with parallaxes larger than 5 mas, only 7 exhibit no evidence forduplicity whatsoever (be it spectroscopic or astrometric). Finally, thefraction of proper-motion binaries shows no significant variation amongthe various (regular) spectral classes, when due account is taken forthe detection biases.Full Table [see full textsee full text] is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/464/377
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Statistical Constraints for Astrometric Binaries with Nonlinear Motion Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Stellar encounters with the solar system We continue our search, based on Hipparcos data, for stars which haveencountered or will encounter the solar system(García-Sánchez et al. \cite{Garcia}). Hipparcos parallaxand proper motion data are combined with ground-based radial velocitymeasurements to obtain the trajectories of stars relative to the solarsystem. We have integrated all trajectories using three different modelsof the galactic potential: a local potential model, a global potentialmodel, and a perturbative potential model. The agreement between themodels is generally very good. The time period over which our search forclose passages is valid is about +/-10 Myr. Based on the Hipparcos data,we find a frequency of stellar encounters within one parsec of the Sunof 2.3 +/- 0.2 per Myr. However, we also find that the Hipparcos data isobservationally incomplete. By comparing the Hipparcos observations withthe stellar luminosity function for star systems within 50 pc of theSun, we estimate that only about one-fifth of the stars or star systemswere detected by Hipparcos. Correcting for this incompleteness, weobtain a value of 11.7 +/- 1.3 stellar encounters per Myr within one pcof the Sun. We examine the ability of two future missions, FAME andGAIA, to extend the search for past and future stellar encounters withthe Sun.
| MSX, 2MASS, and the LARGE MAGELLANIC CLOUD: A Combined Near- and Mid-Infrared View The Large Magellanic Cloud (LMC) has been observed by the MidcourseSpace Experiment (MSX) in the mid-infrared and the Two Micron All SkySurvey (2MASS) in the near-infrared. We have performed across-correlation of the 1806 MSX catalog sources and nearly 1.4 million2MASS cataloged point and extended sources and find 1664 matches. Usingthe available color information, we identify a number of stellarpopulations and nebulae, including main-sequence stars, giant stars, redsupergiants, carbon- and oxygen-rich asymptotic giant branch (AGB)stars, planetary nebulae, H II regions, and other dusty objects likelyassociated with early-type stars. A total of 731 of these sources haveno previous identification. We compile a listing of all objects, whichincludes photometry and astrometry. The 8.3 μm MSX sensitivity is thelimiting factor for object detection: only the brighter red objects,specifically the red supergiants, AGB stars, planetary nebulae, and H IIregions, are detected in the LMC. The remaining objects are likely inthe Galactic foreground. The spatial distribution of the infrared LMCsources may contribute to understanding stellar formation and evolutionand the overall galactic evolution. We demonstrate that a combined mid-and near-infrared photometric baseline provides a powerful means ofidentifying new objects in the LMC for future ground-based andspace-based follow-up observations.
| Stellar Encounters with the Oort Cloud Based on HIPPARCOS Data We have combined Hipparcos proper-motion and parallax data for nearbystars with ground-based radial velocity measurements to find stars thatmay have passed (or will pass) close enough to the Sun to perturb theOort cloud. Close stellar encounters could deflect large numbers ofcomets into the inner solar system, which would increase the impacthazard at Earth. We find that the rate of close approaches by starsystems (single or multiple stars) within a distance D (in parsecs) fromthe Sun is given by N= 3.5D^2.12 Myr^-1, less than the number predictedby a simple stellar dynamics model. However, this value is clearly alower limit because of observational incompleteness in the Hipparcosdata set. One star, Gliese 710, is estimated to have a closest approachof less than 0.4 pc 1.4 Myr in the future, and several stars come within1 pc during a +/-10 Myr interval. We have performed dynamicalsimulations that show that none of the passing stars perturb the Oortcloud sufficiently to create a substantial increase in the long-periodcomet flux at Earth's orbit.
| UBV photometry of galactic foreground and LMC member stars. II. Galactic foreground stars (supplement) In addition to the list of $UBV$ photometries of 955 galactic foregroundstars in the direction to the Large Magellanic Cloud published byGochermann et al. (\cite[1993a]{G93a}), a supplement of 545 stars ispresented, which have been measured with the same photometric accuracy.Moreover, less reliable photometries of 379 further foreground stars arelisted in a separate table. The homogeneous data base of more than 1,500high accuracy photometries represented by these stars has been used toconstruct a reddening distribution map of the galactic foregroundtowards the LMC by Oestreicher et al. (\cite[1995]{Oe95b}).
| HIPPARCOS : die wissenschaftliche Ernte beginnt. Not Available
| A large, complete, volume-limited sample of G-type dwarfs. I. Completion of Stroemgren UVBY photometry Four-colour photometry of potential dwarf stars of types G0 to K2,selected from the Michigan Spectral Catalogues (Vol. 1-3), has beencarried out. The results are presented in a catalogue containing 4247uvby observations of 3900 stars, all south of δ = -26deg. Theoverall internal rms errors of one observation (transformed to thestandard system) of a program star in the interval 8.5 < V < 10.5are 0.0044, 0.0021, 0.0039, and 0.0059, respectively, in V, b-y, m_1_ ,and c_1_. The purpose of the catalogue, combined with earliercatalogues, is to allow selection of a large, complete, volume-limitedsample of G- and K-type dwarfs, investigate their metallicitydistribution, and compare it to predictions of various models ofgalactic chemical evolution. Future papers in this series will discussthese subjects.
| Positional reference stars in the Magellanic Clouds The equatorial coordinates are determined of 926 stars (mainly ofgalactic origin) in the direction of the Magellanic Clouds at the meanepoch T = 1978.4 with an overall accuracy characterized by the meanvalues of the O-C coordinates, Sa = 0.35 arcsec and Sd = 0.38 arcsec,calculated from the coordinates of the Perth reference stars. Thesevalues are larger than the accuracy expected for primary standard stars.They allow the new positions to be considered as those of reliablesecondary standard stars. The published positions correspond to anunquestionable improvement of the quality of the coordinates provided inthe current catalogs. This study represents an 'astrometric step' in thestarting of a 'Durchmusterung' of the Magellanic Clouds organized by deBoer (1988, 1989).
| Radial velocities from objective-prism plates in the direction of the Large Magellanic Cloud. List of 398 stars, LMC members. List of 1434 galactic stars, in the LMC direction Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974A&AS...13..173F&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Dorado |
Right ascension: | 05h04m53.50s |
Declination: | -69°10'08.0" |
Apparent magnitude: | 9.276 |
Distance: | 41.632 parsecs |
Proper motion RA: | 11.5 |
Proper motion Dec: | 5 |
B-T magnitude: | 10.348 |
V-T magnitude: | 9.365 |
Catalogs and designations:
|