Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 179094


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Mass loss and orbital period decrease in detached chromospherically active binaries
The secular evolution of the orbital angular momentum (OAM), thesystemic mass (M=M1+M2) and the orbital period of114 chromospherically active binaries (CABs) were investigated afterdetermining the kinematical ages of the subsamples which were setaccording to OAM bins. OAMs, systemic masses and orbital periods wereshown to be decreasing by the kinematical ages. The first-orderdecreasing rates of OAM, systemic mass and orbital period have beendetermined as per systemic OAM, per systemic mass and per orbitalperiod, respectively, from the kinematical ages. The ratio of d logJ/dlogM= 2.68, which were derived from the kinematics of the presentsample, implies that there must be a mechanism which amplifies theangular momentum loss (AML) times in comparison to isotropic AML ofhypothetical isotropic wind from the components. It has been shown thatsimple isotropic mass loss from the surface of a component or bothcomponents would increase the orbital period.

Spurious `active longitudes' in parametric models of heavily spotted eclipsing binaries
In this paper, the size distributions of starspots extrapolated from thecase of the Sun are modelled on the eclipsing binary SV Cam tosynthesize images of stellar photospheres with high spot fillingfactors. These spot distributions pepper the primary's surface withspots, many of which are below the resolution capabilities ofeclipse-mapping and Doppler-imaging techniques. The light curvesresulting from these modelled distributions are used to determine thelimitations of image reconstruction from photometric data. Surfacebrightness distributions reconstructed from these light curves showdistinctive spots on the primary star at its quadrature points. It isconcluded that two-spot modelling or chi-squared minimization techniquesare more susceptible to spurious structures being generated bysystematic errors, arising from incorrect assumptions about photosphericsurface brightness, than simple Fourier analysis of the light curves.

Flip-flop phenomenon: observations and theory
In many active stars the spots concentrate on two permanent activelongitudes which are 180 ° apart. In some of these stars thedominant part of the spot activity changes the longitude every fewyears. This so-called flip-flop phenomenon has up to now been reportedin 11 stars, both single and binary alike, and including also the Sun.To explain this phenomenon, a non-axisymmetric dynamo mode, giving riseto two permanent active longitudes at opposite stellar hemispheres, isneeded together with an oscillating axisymmetric magnetic field. Here wediscuss the observed characteristics of the flip-flop phenomenon andpresent a dynamo solution to explain them.

Mg II chromospheric radiative loss rates in cool active and quiet stars
The Mg II k emission line is a good indicator of the level ofchromospheric activity in late-type stars. We investigate the dependenceof this activity indicator on fundamental stellar parameters. To thispurpose we use IUE observations of the Mg II k line in 225 late-typestars of luminosity classes I-V, with different levels of chromosphericactivity. We first re-analyse the relation between Mg II k lineluminosity and stellar absolute magnitude, performing linear fits to thepoints. The ratio of Mg II surface flux to total surface flux is foundto be independent of stellar luminosity for evolved stars and toincrease with decreasing luminosity for dwarfs. We also analyse the MgII k line surface flux-metallicity connection. The Mg II k emissionlevel turns out to be not dependent on metallicity. Finally, the Mg II kline surface flux-temperature relation is investigated by treatingseparately, for the first time, a large sample of very active and normalstars. The stellar surface fluxes in the k line of normal stars arefound to be strongly dependent on the temperature and slightly dependenton the gravity, thus confirming the validity of recently proposedmodels. In contrast, data relative to RS CVn binaries and BY Dra stars,which show very strong chromospheric activity, are not justified in theframework of a description based only on acoustic waves and uniformlydistributed magnetic flux tubes so that they require more detailedmodels.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Kinematics of chromospherically active binaries and evidence of an orbital period decrease in binary evolution
The kinematics of 237 chromospherically active binaries (CABs) werestudied. The sample is heterogeneous with different orbits andphysically different components from F to M spectral-type main-sequencestars to G and K giants and supergiants. The computed U, V, W spacevelocities indicate that the sample is also heterogeneous in velocityspace. That is, both kinematically younger and older systems exist amongthe non-evolved main sequence and the evolved binaries containing giantsand subgiants. The kinematically young (0.95 Gyr) subsample (N= 95),which is formed according to the kinematical criteria of moving groups,was compared with the rest (N= 142) of the sample (3.86 Gyr) toinvestigate any observational clues of binary evolution. Comparing theorbital period histograms between the younger and older subsamples,evidence was found supporting the finding of Demircan that the CABs losemass (and angular momentum) and evolve towards shorter orbital periods.The evidence of mass loss is noticeable on the histograms of the totalmass (Mh+Mc), which is compared between theyounger (only N= 53 systems available) and older subsamples (only N= 66systems available). The orbital period decrease during binary evolutionis found to be clearly indicated by the kinematical ages of 6.69, 5.19and 3.02 Gyr which were found in the subsamples according to the periodranges of logP<= 0.8, 0.8 < logP<= 1.7 and 1.7 < logP<=3, respectively, among the binaries in the older subsample.

VLA Radio Positions of Stars: 1978-1995
VLA astrometric positions of the radio emission from 52 stars arereported, from observations obtained between 1978 and 1995. Thepositions of these stars have been obtained and reduced in a uniformmanner. Based on our measurements, the offset of the optical (Hipparcos)frame from the radio reference frame is in agreement with the Hipparcosextragalactic link results, within their mean errors. Comparison of theVLA measurements with the Hipparcos optical positions confirms earlierestimates of the accuracy of these positions as 30 mas. Long-termmeasurements of UX Ari have improved its proper motion.

Differential rotation on UZ Librae
We analysed a time series of nine consecutive years of high-precisionphotometry of the spotted RS CVn star UZ Lib by using a discreteFourier-transform technique and a non-linear least-squares minimization.The main period of 4.77 days due to stellar rotation was resolved intothree individual periods separated by -0.2% and +0.4% around the mainperiod. The stability of the spot pattern over many years, as derivedfrom our contemporaneous Doppler images, allowed us to relate thedifferent periods to co-existing spots at different latitudes, and thusto the direct determination of the strength and the sign of thedifferential rotation. The main period originates from the equatorialsurface regions and is practically the same as the orbital period fromindependent radial-velocity measurements, suggesting that the stellarequator is tidally locked to the orbital motion. The higher latitudesrotate slightly faster than the equator, suggesting non-solardifferential rotation with a parameter of alpha =Delta Omega /Omega=-0.0026, 80 times weaker than on the solar surface, and a lap time ofPequator/alpha ~ -1800 days, i.e. 14 times longer than forthe Sun.

A study of the Mg II 2796.34 Å emission line in late-type normal and RS CVn stars
We carry out an analysis of the Mg II 2796.34 Å emission line inRS CVn stars and make a comparison with the normal stars studied in aprevious paper (Paper I). The sample of RS CVn stars consists of 34objects with known HIPPARCOS parallaxes and observed at high resolutionwith IUE. We confirm that RS CVn stars tend to possess wider Mg II linesthan normal stars having the same absolute visual magnitude. However, wecould not find any correlation between the logarithmic line width logWdeg and the absolute visual magnitude MV (theWilson-Bappu relationship) for these active stars, contrary to the caseof normal stars addressed in Paper I. On the contrary, we find that astrong correlation exists in the (MV, log LMg II)plane (LMg II is the absolute flux in the line). In thisplane, normal and RS CVn stars are distributed along two nearly parallelstraight lines with RS CVn stars being systematically brighter by ~1dex. Such a diagram provides an interesting tool to discriminate activefrom normal stars. We finally analyse the distribution of RS CVn and ofnormal stars in the (log LMg II, log Wdeg) plane,and find a strong linear correlation for normal stars, which can be usedfor distance determinations.

New periodic variables from the Hipparcos epoch photometry
Two selection statistics are used to extract new candidate periodicvariables from the epoch photometry of the Hipparcos catalogue. Theprimary selection criterion is a signal-to-noise ratio. The dependenceof this statistic on the number of observations is calibrated usingabout 30000 randomly permuted Hipparcos data sets. A significance levelof 0.1 per cent is used to extract a first batch of candidate variables.The second criterion requires that the optimal frequency be unaffectedif the data are de-trended by low-order polynomials. We find 2675 newcandidate periodic variables, of which the majority (2082) are from theHipparcos`unsolved' variables. Potential problems with theinterpretation of the data (e.g. aliasing) are discussed.

Time series photometric spot modelling V. Phase coherence of spots on UZ Librae
We present spot models for nine years of continuous VI_C photometry ofUZ Lib from 1993-2001. The relatively stable double-humped light curveshape suggests extreme phase coherence. From the spot-modellinganalysis, we found that the major spots or spot groups are alwayslocated on the hemisphere facing the secondary star and exactly in theopposite hemisphere anti-facing the secondary. Several single-humpedlight curves and our suggested binary scenario rule out a pureellipsoidal variability as the cause of the double-humped light curveshape. We try to explain this preferred spot pattern with amagnetic-field structure that connects the two components, as suggestedearlier for RS CVn stars in general. A possible 4.8 years spot cycle isfound from the long-term brightness variations but needs confirmation.We rediscuss the basic astrophysical data of UZ Lib. The Hipparcosparallax is likely wrong, a possible reason could be that UZ Lib ise.g., a triple system.

Starspot lifetimes
Photometry and Doppler imaging are both powerful techniques that can beused to evaluate the timescales of surface activity phenomena on activerapidly rotating objects. Active longitudes are most easily detectedthrough photometry. These are found to have lifetimes of between 4-8years. Many RSCVn binary systems and single stars show the ``flip-flop''effect, where dominant spotted regions switch back and forth by180deg longitude over a set number of years. Doppler imagingis most effective at evaluating the presence of polar spots and smallerscale spots in the mid to low latitude regions (up to 3degresolution at the equator). This technique enables the monitoring ofspot group lifetimes with greater accuracy than with photometry alone.Polar spots are found to have lifetimes of over a decade in RSCVn binarysystems (V711 Tau & EI Eri) and in single MS stars, (AB Dor). In ABDor, long-term photometry and Doppler imaging show that when the starwas at its most spotted, there was no polar spot. Recent resultsindicate that surface shear was also suppressed in AB Dor at the sameepoch. This implies that spot lifetimes can also be affected by changingsurface shear rates over the course of an activity cycle. Mid to lowlatitude spots on single MS stars are found to have lifetimes of under 1month. Spots in active components of RSCVn binaries show less modulationover a month compared to single MS rapid rotators. This indicates thateither less flux is injected into the stellar surface over one month, orelse that flux emergence is confined to small preferred regions intidally locked systems. More long-term monitoring of these and otherrapidly rotating systems using Doppler imaging, photometry and molecularband mapping using TiO and OH will enable us to evaluate whether or notthese initial trends are representative of active cool stars.

Optical positions of 55 radio stars from astrolabe observations from the Yunnan Observatory
The observations by the photoelectric astrolabe at Yunnan Observatoryrelative to the Hipparcos Catalogue and the optical positions of 55radio stars were obtained from observations between 1991 and 2000. Theyall resulted from processing the photon counts obtained by means of theastrolabe after the automation of the instrument. There are 46 stars incommon with the Hipparcos Catalogue. Tables \ref{t1} and \ref{t2} arealso available in electronic form at the CDS via anonymous ftpcdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/383/1062.

The Catania Automatic Photoelectric Telescope on Mt. Etna: a systematic study of magnetically active stars
A photometric monitoring of about 50 magnetically active stars, that arespread almost all over the H-R diagram, was initiated at the mountainstation of Catania Observatory on Mt. Etna (1750-m a.s.l.) in 1992 withan 80-cm robotic telescope (APT-80) built by AutoScope Co. (USA). Thissystematic survey is now approaching its 10th year anniversary. For mostof the stars, quite well defined solar-like spot maps have been derivedfrom UBV data obtained in different epochs. These data have allowed usto investigate some relevant characteristics of spot activity andvariability on stars, and to obtain clear evidence of long-term activitycycles, in the range from a few to about 10 years, on some of theobserved targets. Starspot maps are constructed by using advanced tools,such as massive parallel computing and are based on Maximum Entropy andTikhonov regularization criteria. Selected results are here presented.Our systematic observation program is still underway and a secondAPT80/2, equipped with a CCD camera, will pair the APT80/1 on the samesite. Its operation is foreseen for mid 2002.

Hydroxyl 1.563 Micron Absorption from Starspots on Active Stars
We present results from a study of starspots on active stars using apair of vibrational-rotational absorption lines of the OH molecule near1.563 μm. We detect excess OH absorption due to dark, cool starspotson several active stars of the RS CVn and BY Dra classes. Our resultsfor the single-lined spectroscopic binaries II Pegasi, V1762 Cygni, andλ Andromedae augment those from a previous study that used a lesssensitive detector. In this study, we were able for the first time touse molecular absorption features to measure starspot properties ondouble-lined spectroscopic binaries. Measuring the equivalent widths ofthese OH lines in inactive giant and dwarf stars of spectral types G, K,and M, we find that the total equivalent width of the line pairincreases approximately linearly as effective temperature decreases from5000 to 3000 K. We measure starspot filling factors by fitting thespectra of active stars with linear combinations of comparison starspectra representing the spot and nonspot regions of the star.

Spectroscopic and photometric observations of the short-period RS CVn star RT And
Spectroscopic observations in the range 6500-6700 Å and BVRIphotometry of the eclipsing short-period RS CVn-star RT And arepresented. We determined K1=130 km s-1 andK2=175.8 km s-1 by measurement of the doubleprofiles of the lines Hα and FeI 6678, and obtained the mass ratioq=0.74 and masses of the star components M1=1.23Msun and M2=0.91 Msun. It wasestablished that the emission activity of RT And is associated with itssecondary component. The relative contribution of the secondary star isstronger in the FeI 6678 line than in Hα. A strong emissionfeature between the two profiles of FeI 6678 at phase 0.73 was detectedthat is probably due to the appearance of extended emitting structure.The multicolor light curve of RT And is fitted by two cool spots on theprimary star with equal sizes 21o and temperatures 4980 K andlocated at middle latitudes and longitudes symmetrical to the lineconnecting the star centers. Both spectral and photometric data lead tothe conclusion that the secondary star of RT And is oversized for itsmass.

BVR photometry and Hα spectroscopy of RS CVn type binary MM Herculis
The RS CVn type eclipsing binary MM Herculis wasobserved photo-electrically using B, V and R filters in 1998 and 1999and the light and colour curves were obtained. Spectroscopicobservations were carried out in 1999. The new light and colour curvesare anti-correlated with the observations of 1997, i.e. the system isbluer when it is faintest. The variations of the brightnesses at eachspecial phase (0.0, 0.25, 0.5, and 0.75) show an almost cyclic changewith a period of about 6 years. This value is in good agreement with themigration periods of the spots suggested by us previously. Theoutside-of-eclipse wave in the light curve shows a minimum at phase~0.50, and the mean colour of the system is the bluest at the samephase. When the spots located on the cooler component are seen aroundphase 0.50, the amplitude of the light variation outside eclipse islarger than the others. Such variation may be caused by the effect ofthe hotter component. Spectroscopic observations of the system werecarried out in the spectral range 5860-6700 Å. The subtraction ofa ``synthetic'' spectrum, built up with spectra of inactive standardstars, allows us to detect an Hα emission excess only from thecool component. New radial velocity measurements of the system wereobtained and analyzed for the orbital parameters. Based on observationscollected at the Ege University Observatory, Turkey, and at the CataniaAstrophysical Observatory, Italy.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

On the Variability of Early K Stars
We investigate the Hipparcos Satellite photometry of K0-K4 stars tostudy their pattern of activity. Most are not particularly variable. Afew stars for which further study is desirable are identified.

An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars
We use our ultraviolet (UV) atlas of pre-main-sequence stars constructedfrom all useful, short-wavelength, low-resolution spectra in theInternational Ultraviolet Explorer (IUE) satellite Final Archive toanalyze the short-wavelength UV properties of 49 T Tauri stars (TTSs).We compare the line and continuum fluxes in these TTSs with each otherand with previously published parameters of these systems, includingrotation rate, infrared excess, and mass accretion rate. Theshort-wavelength continuum in the classical TTSs (CTTSs) appears tooriginate in a ~10,000 K optically thick plasma, while in the naked TTSs(NTTSs-stars without dusty disks) the continuum appears to originate inthe stellar atmosphere. We show that all of the TTSs in our sample liein the regime of ``saturated'' magnetic activity due to their smallRossby numbers. However, while some of the TTSs show emission linesurface fluxes consistent with this saturation level, many CTTSs showsignificantly stronger emission than predicted by saturation. In thesestars, the emission line luminosity in the high ionization lines presentin the spectrum between 1200 and 2000 Å correlates well with themass accretion rate. Therefore, we conclude that the bulk of theshort-wavelength emission seen in CTTSs results from accretion relatedprocesses and not from dynamo-driven magnetic activity. Using CTTSs withknown mass accretion rates, we calibrate the relationship between M andLC IV to derive the mass accretion rate for some CTTSs whichfor various reasons have never had their mass accretion rates measured.Finally, several of the CTTSs show strong emission from molecularhydrogen. While emission from H2 cannot form in gas at atemperature of ~105 K, the strength of the molecular hydrogenemission is nevertheless well correlated with all the other emissionsdisplayed in the IUE short-wavelength bandpass. This suggests that theH2 emission is in fact fluorescent emission pumped by theemission (likely Lyα) from hotter gas.

High excitation emission lines in binary systems with roundchroms
An unexpected empirical fact, a dependence of the observed luminositiesin high excitation emission lines - 1240 NV, 1400 SiIV, 1550 CIV, 1640HeII - on the intercomponent distance a of RS CVn type close binarysystems, is revealed. It is assumed that those high excitation emissionlines are generated most probably in a cone-like region between theLagrangian point L_1 and the surface of the primary component of thesystem. The behavior of high excitation emission lines at various phasesof the eclipse in the case of two binary systems, SX Cas and 22 Vul,indicates the possibility of existence of such a `Lagrangian cone' inthe structure of common chromospheres - roundchroms - of close binarysystems as a main source of generation of high excitation emissionlines.

Imaging Stellar Surfaces via Matrix Light-Curve Inversion
Matrix light-curve inversion (MLI) is a technique for deducing thesurface brightness distributions of rapidly rotating spotted stars orthe surface albedo distributions of planets (in particular Pluto) fromtheir rotational light curves. When applied to the stellar problem, ithas the significant advantage over ``spot models'' that it makes no apriori assumptions about the number of spots on the stellar surface ortheir shapes. We demonstrate the viability of MLI for determining thelocations and sizes of dark spots on stellar surfaces and explore itspotential and its limitations by presenting the results of inversions ofsynthetic light curves corresponding to model stars with known surfacefeatures. We show that when light curves acquired through differentphotometric filters are simultaneously inverted, significantimprovements can be achieved compared to when only a single filter isused. In particular, it becomes possible to detect the presence ofhigh-latitude activity, presenting the possibility of corroboratingDoppler images that imply high-latitude spots.

The magnetic activity cycle of II Pegasi: results from twenty-five years of wide-band photometry
We present an analysis of a sequence of light curves of the RS CVn-typebinary II Pegasi extending from 1974 to 1998. The distribution of thespotted area versus longitude is derived by Maximum Entropy and Tikhonovregularized maps, assuming a constant spot temperature (Lanza et al.1998a). The spot pattern on the active K2 IV star can be subdivided intoa component uniformly distributed in longitude and a second unevenlydistributed component, which is responsible for the observed photometricmodulation. The uniformly distributed component appears to be possiblymodulated with an activity cycle of ~ 13.5 yr. The unevenly distributedcomponent is mainly concentrated around three major active longitudes.The spot activity appears practically permanent at one longitude, butthe spot area changes with a cycle of ~ 9.5 yr. On the contrary, thespot activity is discontinuous at the other two longitudes, and itswitches back and forth between them with a cycle of ~ 6.8 yr. However,before each switching is completed, a transition phase of ~ 1.05 yr,during which both longitudes are active, occurs. After this transientphase, spot activity remains localized at one of the two longitudes for~ 4.7 yr untill another switching event occurs, which re-establishesspot activity at the other longitude. The longitude separation betweenthe permanent and the switching active longitudes is closest during theswitching phases and it varies along the ~ 6.8 yr cycle. Different timescales characterize the activity at the permanent longitude and at theswitching longitudes: a period of ~ 9.5 yr is related to the activitycycle at the permanent longitude, and a period of ~ 4.3 yr characterizesthe spot life time at the switching longitudes in between switchingevents. The photometric period of the active star changes from season toseason with a relative amplitude of 1.5% and a period of ~ 4.7 yr. Sucha variation of the photometric period may be likely associated with thephase shift of the light curves produced by the switching of spotactivity from one active longitude to the other. The permanently activelongitude shows a steady migration towards decreasing orbital phases,with an oscillating migration rate along the 9.5 yr cycle period andnearly in phase with the variation of its spotted area. The amplitude ofthe differential rotation derived from such a behaviour is of the orderof ~ 0.023%, about one order of magnitude smaller than estimated byHenry et al. (1995). The other two active longitudes migrates alsotowards decreasing orbital phase, but at a discontinuous rate. Thereappears to be no correlation between the location of the activelongitudes with respect to the line joining the two components of thesystem and their activity level.

On X-Ray Variability in Active Binary Stars
We have compared the X-ray emissions of active binary stars observed atvarious epochs by the Einstein and ROSAT satellites in order toinvestigate the nature of their X-ray variability. The primary aim ofthis work is to determine whether or not active binaries exhibitlong-term variations in X-ray emission, perhaps analogous to theobserved cyclic behavior of solar magnetic activity. We find that, whilethe mean level of emission of the sample remains steady, comparison ofdifferent ROSAT observations of the same stars shows significantvariation on timescales <~2 yr, with an ``effective variability''ΔI/I=0.32+/-0.04, where I and ΔI represent the mean emissionand variation from the mean emission, respectively. A comparison of theROSAT All-Sky Survey and later pointed observations with earlierobservations of the same stars carried out with Einstein yields onlymarginal evidence for a larger variation (ΔI/I=0.38+/-0.04 forEinstein vs. ROSAT All-Sky Survey and 0.46+/-0.05 for Einstein vs. ROSATpointed) at these longer timescales (~10 yr), thus indicating thepossible presence of a long-term component to the variability. Whetheror not this long-term component is due to the presence of cyclicvariability cannot be decided on the basis of existing data. However,assuming that this component is analogous to the observed cyclicvariability of the Sun, we find that the relative magnitude of thecyclic component in the ROSAT passband can, at most, be a factor of 4,i.e., I_cyc/I_min<4. This is to be compared with the correspondingbut significantly higher solar value of ~10-10^2 derived from GOES,Yohkoh, and Solrad data. These results are consistent with thesuggestions of earlier studies that a turbulent or distributive dynamomight be responsible for the observed magnetic activity on the mostactive, rapidly rotating stars.

Time Evolution of the Magnetic Activity Cycle Period. II. Results for an Expanded Stellar Sample
We further explore nondimensional relationships between the magneticdynamo cycle period P_cyc, the rotational period P_rot, the activitylevel (as observed in Ca II HK), and other stellar properties byexpanding the stellar sample studied in the first paper in this series.We do this by adding photometric and other cycles seen in active starsand the secondaries of CV systems and by selectively adding less certaincycles from the Mount Wilson HK survey; evolved stars, long-term HKtrends and secondary P_cyc are also considered. We confirm that moststars with age t>~0.1 Gyr occupy two roughly parallel branches,separated by a factor of ~6 in P_cyc, with the ratio of cycle androtational frequencies ω_cyc/Ω~Ro^-0.5, where Ro is theRossby number. Using the model of the first paper in this series, thisresult implies that the α effect increases with mean magneticfield (contrary to the traditional α-quenching concept) and thatα and ω_cyc decrease with t. Stars are not strictlysegregated onto one or the other branch by activity level, though thehigh-ω_cyc/Ω branch is primarily composed of inactive stars.The expanded data set suggests that for t>~1 Gyr, stars can havecycles on one or both branches, though among older stars, those withhigher (lower) mass tend to have their primary P_cyc on the lower(upper) ω_cyc/Ω branch. The Sun's ~80 yr Gleissberg cycleagrees with this scenario, suggesting that long-term activity ``trends''in many stars may be segments of long (P_cyc~50-100 yr) cycles not yetresolved by the data. Most very active stars (P_rot<3 days) appear tooccupy a new, third branch with ω_cyc/Ω~Ro^0.4. Many RS CVnvariables lie in a transition region between the two most activebranches. We compare our results with various models, discuss theirimplications for dynamo theory and evolution, and use them to predictP_cyc for three groups: stars with long-term HK trends, stars in youngopen clusters, and stars that may be in Maunder-like magnetic minima.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Optical Positions of 44 Radio Stars from Astrolabe Observations
The observations made with the photoelectric astrolabe at YunnanObservatory since 1986 have been reprocessed in the Hipparcos Catalogue,and the optical positions of 44 radio stars obtained. These are all thestars in common with the Hipparcos Catalogue.

Early Radio Positions of Stars
Early radio positions for a sample of 100 Hipparcos stars, threeTycho-only stars, and nine radio stars with optical positions referredto the Hipparcos/ICRS frame are analyzed. The optical proper motions areused to compare the optical and radio positions. From an original sampleof 247 radio positions for the above 112 stars, a set of 220 showscoincidence between the optical and radio centers of emission closerthan 500 mas. This set is analyzed for systematic departures between theoptical and radio positions. A smaller subset of 136 early radiopositions for 72 stars show radio-minus-optical offsets smaller than 100mas and are useful for monitoring of the spin of the Hipparcos frame.

Absolute declinations with the photoelectric astrolabe at Calern Observatory (OCA)
A regular observational programme with a photoelectric astrolabe havebeen performed at ``Observatoire du Calern" (Observatoire de laCôte d'Azur, OCA, phi = +43() o44′55.011″; lambda =-0() h27() m42.44() s, Calern, Caussols, France) for the last twentyyears. It has been almost fully automatized between 1984 and 1987. Since1988 the photoelectric astrolabe was used without any modification. Inaddition to determining the daily orientation of the local vertical, theyearly analysis of the residuals permits to derive corrections to theused star catalogue \cite[(Vigouroux et al. 1992)]{vig92}. A globalreduction method was applied for the ASPHO observations. The new form ofthe equations \cite[(Martin & Leister 1997)]{mar97} give us thepossibility of using the entire set of the observing program using datataken at two zenith distances (30() o and 45() o). The program containsabout 41648 stars' transits of 269 different stars taken at``Observatoire du Calern" (OCA). The reduction was based on theHIPPARCOS system. We discuss the possibility of computing absolutedeclinations through stars belonging simultaneously to the 30() o and45() o zenith distances programmes. The absolute declination correctionswere determined for 185 stars with precision of 0.027arcsec and thevalue of the determined equator correction is -0.018arcsec +/-0.005arcsec . The instrumental effects were also determined. The meanepoch is 1995.29. Catalogue only available at CDS in electronic from viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Wilson-Bappu relation for RS CVn stars
We investigate the extent to which the Wilson-Bappu relationship holdsfor chromospherically active binaries using the Mg ii h&k lines of41 RS CVn stars observed with IUE. The resulting fits are different fromthe relationships obtained for single, less active stars. The parallaxused were those from the hipparcos catalogue, these give a much bettercorrelation than the magnitudes taken from CABS. Within a particularluminosity class the relationship is good, however it tends to breakdown when we incorporate objects ranging in luminosity from class i tov. From model calculations there is very little dependence of the Mg iiline width on effective temperature. The line width does however dependon the column mass at the transition region boundary showing increasedline width at lower column mass. There is also a dependence on thecolumn mass adopted for the temperature minimum, however, the major anddominant parameter is the surface gravity scaling as g(-1/4) . Within aluminosity class more active objects will show larger lines widthsreflecting a higher column mass deeper in the atmosphere, e.g. at thetemperature minimum level.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cygne
Right ascension:19h08m25.80s
Declination:+52°25'32.0"
Apparent magnitude:5.81
Distance:70.225 parsecs
Proper motion RA:-99.5
Proper motion Dec:-54.8
B-T magnitude:7.286
V-T magnitude:6.014

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 179094
TYCHO-2 2000TYC 3554-1071-1
USNO-A2.0USNO-A2 1350-10237768
BSC 1991HR 7275
HIPHIP 94013

→ Request more catalogs and designations from VizieR