Contents
Images
Upload your image
DSS Images Other Images
Related articles
The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Rotational velocities of A-type stars in the northern hemisphere. II. Measurement of v sin i This work is the second part of the set of measurements of v sin i forA-type stars, begun by Royer et al. (\cite{Ror_02a}). Spectra of 249 B8to F2-type stars brighter than V=7 have been collected at Observatoirede Haute-Provence (OHP). Fourier transforms of several line profiles inthe range 4200-4600 Å are used to derive v sin i from thefrequency of the first zero. Statistical analysis of the sampleindicates that measurement error mainly depends on v sin i and thisrelative error of the rotational velocity is found to be about 5% onaverage. The systematic shift with respect to standard values fromSlettebak et al. (\cite{Slk_75}), previously found in the first paper,is here confirmed. Comparisons with data from the literature agree withour findings: v sin i values from Slettebak et al. are underestimatedand the relation between both scales follows a linear law ensuremath vsin inew = 1.03 v sin iold+7.7. Finally, thesedata are combined with those from the previous paper (Royer et al.\cite{Ror_02a}), together with the catalogue of Abt & Morrell(\cite{AbtMol95}). The resulting sample includes some 2150 stars withhomogenized rotational velocities. Based on observations made atObservatoire de Haute Provence (CNRS), France. Tables \ref{results} and\ref{merging} are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/393/897
| The Angular Momentum of Main Sequence Stars and Its Relation to Stellar Activity Rotational velocities are reported for intermediate-mass main sequencestars it the field. The measurements are based on new, high S/N CCDspectra from the Coudé Feed Telescope of the Kitt Peak NationalObservatory. We analyze these rotation rates for a dependence on bothmass and age. We compare the average rotation speeds of the field starswith mean velocities for young stars in Orion, the Alpha Persei cluster,the Pleiades, and the Hyades. The average rotation speeds of stars moremassive than $\sim1.6$ \msun\experience little or no change during theevolutionary lifetimes of these stars on the zero age main sequence orwithin the main sequence band. Less massive stars in the range betwee n1.6\msun\ and 1.3\msun\ also show little decline in mean rotation ratewhile they are on the main sequence, and at most a factor of 2 decreasein velocity as they evolve off the main sequence. The {\it e}-foldingtime for the loss of angular momentum b y the latter group of stars isat least 1--2 billion years. This inferred characteristic time scale forspindown is far longer than the established rotational braking time forsolar-type stars with masses below $\sim1.3$ \msun. We conclude from acomparison of the trends in rotation with trends in chromospheric andcoronal activity that the overall decline in mean rotation speed alongthe main sequence, from $\sim2$ \msun\ down to $\sim1.3$ \msun, isimposed during the pre-main sequence phase of evolution, and that thispattern changes little thereafter while the star resides on the mainsequence. The magnetic activity implicated in the rotational spindown ofthe Sun and of similar stars during their main sequence lifetimes mus ttherefore play only a minor role in determining the rotation rates ofthe intermediate mass stars, either because a solar-like dynamo is weakor absent, or else the geometry of the magnetic field is appreciablyless effective in removing angular momentu m from these stars. (SECTION:Stars)
| The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Catalogue of proper motions in the declination of stars of the Moscow zenith zone. Not Available
| UBV photometry of stars whose positions are accurately known. VI Results are presented from UBV photometric observations of 1000 stars ofthe Bright Star Catalogue and the faint extension of the FK5.Observations were carried out between July 1987 and December 1990 withthe 40-cm Cassegrain telescope of the Kvistaberg Observatory.
| Magnetic structure in cool stars. VI - CA II H and K fluxes from evolved stars Quantitative measurements of the Ca II H and K flux of 335 evolved starsare presented and discussed. The results show that there is a largespread in the fluxes from stars with (B-V) less than 0.95 while the CaII H and K flux of single stars with (B-V) greater than 0.95 correlateswith color with little spread. Short-period binaries show a relativelyhigh Ca II H and K flux indicating that high fluxes result from rapidrotation independent of spectral type. The data are consistent with thehypothesis that the emission depends on dynamo action in the convectiveenvelope, the dynamo efficiency decreasing with decreasing rotationrate. The evolution of the emission is discussed as a function ofstellar mass. It is shown that stars which leave the main sequence withrelatively low or high rotational velocities show relatively low or highemission values, respectively. The flux lasts up to higher (B-V) valuesfor progressively higher masses.
| Spectral classification of the bright F stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88...95C&db_key=AST
| MK Spectral Types for Some Bright F Stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1974PASP...86...70C&db_key=AST
| Rotation of evolving A and F stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972A&A....18..428D&db_key=AST
| An interpretation of delta SCT stars. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970AJ.....75..643L&db_key=AST
| Short-Period Variability of b, a, and F Stars. III. a Survey of Delta Scuti Variable Stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969ApJS...19...79B&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Cygne |
Right ascension: | 20h39m00.20s |
Declination: | +56°00'18.0" |
Apparent magnitude: | 6.48 |
Distance: | 130.208 parsecs |
Proper motion RA: | -7.3 |
Proper motion Dec: | -42 |
B-T magnitude: | 6.89 |
V-T magnitude: | 6.486 |
Catalogs and designations:
|