Contents
Images
Upload your image
DSS Images Other Images
Related articles
Common Proper Motion Companions to Nearby Stars: Ages and Evolution A set of 41 nearby stars (closer than 25 pc) is investigated which havevery wide binary and common proper motion (CPM) companions at projectedseparations between 1000 and 200,000 AU. These companions are identifiedby astrometric positions and proper motions from the NOMAD catalog.Based mainly on measures of chromospheric and X-ray activity, ageestimation is obtained for most of 85 identified companions.Color-absolute magnitude diagrams are constructed to test whether CPMcompanions are physically related to the primary nearby stars and havethe same age. Our carefully selected sample includes three remote whitedwarf companions to main-sequence stars and two systems (55 Cnc and GJ777A) of multiple planets and distant stellar companions. Ten new CPMcompanions, including three of extreme separations, are found. Multiplehierarchical systems are abundant; more than 25% of CPM components arespectroscopic or astrometric binaries or multiples themselves. Two newastrometric binaries are discovered among nearby CPM companions, GJ 264and HIP 59000, and preliminary orbital solutions are presented. TheHyades kinematic group (or stream) is presented broadly in the sample,but we find few possible thick-disk objects and no halo stars. Itfollows from our investigation that moderately young (age<~1 Gyr)thin-disk dwarfs are the dominating species in the near CPM systems, ingeneral agreement with the premises of the dynamical survival paradigm.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Subdwarf studies. II - Abundances and kinematics from medium resolution spectra. III - The halo metallicity distribution Stars previously identified as having UV excesses are observed at 1-Aresolution in the Ca II K-line region. Comparisons of these data withother samples and with Monte Carlo simulations involving a singlecomponent halo have yielded estimates of halo velocity dispersions androtation velocity, corrected for the kinematic biases in the sample. Itis suggested that the data are not consistent with a model in which thehalo formed from star formation in a dissipating, collapsing cloud; theyare, however, reconcilable with the formation of the halo stars bynumerous, independently evolving gas clouds. The metallicitydistribution of a sample of 372 kinematically selected halo stars isthen constructed, with a view to selection effects in the data. Goodagreement is noted between the globular cluster metallicity distributionand a stochastic model with a mean of 10 enrichments/fragment.
| Subdwarf studies. I - UBVRI photometry of NLTT stars UBVRI photometry is presented for a sample of 1656 southern stars,including 1211 that were previously unmeasured, drown from the NLTTproper-motion catalog. The catalog is shown to be a rich source ofsubdwarfs. The normalized ultraviolet excess delta (U - B)0.6,photometric parallax, and interstellar reddening are calculated for eachstar when possible. Photometric parallaxes are compared withtrigonometric parallaxes from the literature. It is found that theformer do not have systematic errors greater than about 25 percent. Inagreement with other studies, the bluest subdwarfs are found at B - V =0.35. The selection of the program stars on the basis of large reducedproper motions restricted subgiant contamination of the sample to about5 percent and increased the discovery fraction of halo stars relative todisk stars. The claim is made here that the sample can be used toinvestigate the abundance distribution of the halo. The sample includesstars with ultraviolet excesses characteristic of disk abundances butwith velocities up to 150 km/s. These are believed to be stars that,quite expectedly, reside in the high-velocity tail of the disk velocitydistribution.
| Population studies. I - The Bidelman-MacConnell 'weak-metal' stars BRVI and DDO photometry are presented for 309 Bidelman-MacConnell'weak-metal' stars. Radial velocities are calculated for most of thestars having Fe/H abundances of no more than -0.8. The photometricobservations were carried out using the 0.6-meter and 1.0-metertelescopes of the Siding Spring Observatory. Photometric taxonomy wasused to classify the stars as dwarfs, giants, red-horizontal branchstars, and ultraviolet-bright stars, respectively. It is found that 35percent of the stars are giants; 50 percent are dwarfs; and 5 percentbelong to the red-horizontal branch group. The role of selection effectsin investigations of the formation of the Galaxy is discussed on thebasis of the photometric observations and the observational constraintsproposed by Eggen et al. (1962).
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Fornax |
Right ascension: | 02h04m58.21s |
Declination: | -37°47'56.6" |
Apparent magnitude: | 10.035 |
Proper motion RA: | 224.1 |
Proper motion Dec: | -131.2 |
B-T magnitude: | 10.694 |
V-T magnitude: | 10.09 |
Catalogs and designations:
|